Вставочный нейрон получает сигнал от рецепторов. Нейроны и нервная ткань

Нервные ткани

Вставочный нейрон получает сигнал от рецепторов. Нейроны и нервная ткань

Группа нервных тканей объединяет ткани эктодермального происхождения, которые в совокупности образуют нервную систему и создают условия для реализации ее многочисленных функций. Обладают двумя основными свойствами: возбудимостью и проводимостью.

Нейрон

Структурно-функциональной единицей нервной ткани является нейрон (от др.-греч. νεῦρον — волокно, нерв) – клетка с одним длинным отростком – аксоном, и одним/несколькими короткими – дендритами.

Спешу сообщить, что представление, будто короткий отросток нейрона – дендрит, а длинный – аксон, в корне неверно. С точки зрения физиологии правильнее дать следующие определения: дендрит – отросток нейрона, по которому нервный импульс перемещается к телу нейрона, аксон – отросток нейрона, по которому импульс перемещается от тела нейрона.

Отростки нейронов проводят сгенерированные нервные импульсы и передают их другим нейронам, эффекторам (мышцы, железы), благодаря чему мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.

Миелиновая оболочка

Отростки нейронов покрыты жироподобным веществом – миелиновой оболочкой, которая обеспечивает изолированное проведение нервного импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и, когда мы хотели сделать движение рукой, двигалась бы нога.

Существует болезнь, при которой собственные антитела уничтожают миелиновую оболочку (случаются и такие сбои в работе организма.) Эта болезнь – рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов – а значит, происходит атрофия мышц и человек постепенно становится обездвиженным.

Нейроглия

Вы уже убедились, насколько значимы нейроны, их высокая специализация приводит к возникновению особого окружения – нейроглии.

Нейроглия – вспомогательная часть нервной системы, которая выполняет ряд важных функций:

  • Опорная – поддерживает нейроны в определенном положении
  • Изолирующая – ограничивает нейроны от соприкосновения с внутренней средой организма
  • Регенераторная – в случае повреждения нервных структур нейроглия способствует регенерации
  • Трофическая – с помощью нейроглии осуществляется питание нейронов: напрямую с кровью нейроны не контактируют

В состав нейроглии входят разные клетки, их в десятки раз больше чем самих нейронов. В периферическом отделе нервной системы миелиновая оболочка, изученная нами, образуется именно из нейроглии – шванновских клеток. Между ними хорошо заметны перехваты Ранвье – участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками.

Классификация нейронов

Нейроны функционально подразделяются на чувствительные, двигательные и вставочные.

Чувствительные нейроны также называются афферентные, центростремительные, сенсорные, воспринимающие – они передают возбуждение (нервный импульс) от рецепторов в ЦНС. Рецептором называют концевое окончание чувствительных нервных волокон, воспринимающих раздражитель.

Вставочные нейроны также называются промежуточные, ассоциативные – они обеспечивают связь между чувствительными и двигательными нейронами, передают возбуждение в различные отделы ЦНС.

Двигательные нейроны по-другому называются эфферентные, центробежные, мотонейроны – они передают нервный импульс (возбуждение) из ЦНС на эффектор (рабочий орган). Наиболее простой пример взаимодействия нейронов – коленный рефлекс (однако вставочного нейрона на данной схеме нет). Более подробно рефлекторные дуги и их виды мы изучим в разделе, посвященном нервной системе.

Синапс

На схеме выше вы наверняка заметили новый термин – синапс. Синапсом называют место контакта между двумя нейронами или между нейроном и эффектором (органом-мишенью). В синапсе нервный импульс “преобразуется” в химический: происходит выброс особых веществ – нейромедиаторов (наиболее известный – ацетилхолин) в синаптическую щель.

Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula — пузырек) с нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.

Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение передается другому нейрону, и он генерирует нервный импульс. Так устроена нервная система: электрический путь передачи сменяется химическим (в синапсе).

Яд кураре

Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими ;) Не могу утаить историю о яде кураре, который используют индейцы для охоты с древних времен.

Этот яд блокирует ацетилхолиновые рецепторы на постсинаптической мембране, и, как следствие, химическая передача возбуждения с одного нейрона на другой становится невозможна. Это приводит к тому, что нервные импульсы перестают поступать к мышцам организма, в том числе к дыхательным мышцам (межреберным, диафрагме), вследствие чего дыхание останавливается и наступает смерть животного.

Нервы и нервные узлы

Собираясь вместе, аксоны образуют нервные пучки. Нервные пучки объединяются в нервы, покрытые соединительнотканной оболочкой. В случае, если тела нервных клеток концентрируются в одном месте за пределами центральной нервной системы, их скопления называют нервные узлы – или ганглии (от др.-греч. γάγγλιον — узел).

В случае сложных соединений между нервными волокнами говорят о нервных сплетениях. Одно из наиболее известных – плечевое сплетение.

Болезни нервной системы

Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом движения сохранены в полном объеме.

Если повреждено двигательное звено, движение в пораженной конечности будет невозможно: возникает паралич, но чувствительность может сохраняться.

Существует тяжелое мышечное заболеванием – миастения (от др.-греч. μῦς — «мышца» и ἀσθένεια — «бессилие, слабость»), при котором собственные антитела разрушают мотонейроны.

Постепенно любые движения мышцами становятся для пациента все труднее, становится тяжело долго говорить, повышается утомляемость. Наблюдается характерный симптом – опущение верхнего века. Болезнь может привести к слабости диафрагмы и дыхательных мышц, вследствие чего дыхание становится невозможным.

Источник: https://studarium.ru/article/80

Нейронауки для всех: клетки нервной системы

Вставочный нейрон получает сигнал от рецепторов. Нейроны и нервная ткань

Наш мозг – огромный мегаполис, дорожная инфраструктура которого напоминает связи и проводящие пути; по ним с огромной скоростью и частотой подобно спорткарам проносятся сигналы, а разные линии жилых районов имитируют различные уровни организации головного мозга.

Здесь есть разделение труда, «неравноправие», доминирование, свои валюты и множество других вещей, которые так или иначе напоминают жизнь людей в крупном городе-миллионнике.

Наша нервная система состоит из приблизительно 86 миллиардов нервных, и почти такого же количества (85 миллиардов глиальных клеток и от ста до пятисот триллионов  синапсов (соединений).

При этом она чрезвычайно разнолика и имеет в своём арсенале около сотни клеточных типов, которые способны строить тысячи связей между собой и создавать настоящие клеточные ансамбли.

В таком разнообразии очень легко запутаться, поэтому сегодня мы с вами разберём, что же именно отличает нервную ткань от других, какие клеточные варианты имеются в её составе, чем уникален нейрон и почему именно у нервной системы получается делать нас мыслящими.

Начнём с «внутренностей» нейрона

Как и любая нормальная клетка, он имеет ядро, цитоплазму и клеточную мембрану, которая обособляет его от внешней среды. Однако, это не всё. Нейрон – одна из немногих клеток, которая способна к генерации нервного импульса. О нём мы с вами поговорим в следующих выпусках, а сейчас стоит отметить лишь то, что такая возбудимость позволяет мозгу обрабатывать информацию, а нам — существовать.

У нейрона есть несколько характерных составных элементов, увидев которые вы никогда не спутаете его с другими клетками: это аксон— длинный отросток, по которому сигналы идут от перикариона, или тела, и дендриты – короткие отростки, по которым информация движется к нейрону от его соседей. Аксон, главный «кабель», покрыт «изоляцией»,  миелиновой оболочкой. Миелиновая оболочка аксонов есть только у позвоночных, а поскольку у нас явно есть позвоночник, то… Эту оболочку образуют «накручивающиеся» на аксон специальные шванновские клетки (в центральной нервной системе — олигодендроциты, несколько другой тип клеток, нежели шванновские), между которыми остаются свободные от миелиновой оболочки участки — перехваты Ранвье.

Перикарион имеет в своём составе обычные для живых эукариотических (ядерных) клеток субъединицы: собственно ядро, гранулярную эндоплазматическую сеть (ЭПС), которая синтезирует белки и прочие нужные клетке вещества и окрашивается при специальной окраске в тёмный цвет, которым покрываются глыбки тигроида или субстанции Ниссля, которые можно разглядеть даже в световой микроскоп.

Также здесь есть аппарат Гольджи или «накопительный резервуар», митохондрии — «энергетические станции», лизосомы с «пищеварительными» ферментами, рибосомы, благодаря которым происходит синтез белков, а также целая сеть внутреннего цитоскелета, в которую входят микротрубочки, особые частицы — MAP (протеины, ассоциированные с микротрубочками), а также нейрофиламенты (типа промежуточных нитей).

Благодаря этому скелету в клетке протекает очень важный для неё перенос веществ от центра к периферии, что особенно актуально для длинного (порой до нескольких десятков сантиметров) аксона, который питается также от тела. Такой ток бывает аксональным быстрым (до 100-1000 мм/сутки) и медленным (1-3 мм/сутки), дендритическим (75 мм/сутки), а также движущимся в обратном направлении — ретроградным.

А теперь представим, что перед нами микроскоп, а на предметном столике – покрашенный одним из специфических способов (по Нисслю или импрегнацией серебром) срез мозга.

Как определить, где в переплетении отростков аксоны, а где – дендриты? Посмотреть нужно на тигроид, о котором мы упоминали. Дело в том, что он в виде гранул «рассыпан» по всему телу и коротким отросткам, но никогда вы его не найдёте в отростке длинном.

А заканчивается он в районе аксонального холмика – структуры, близкой к началу аксона, в которой начинается генерация импульса.

Нейрон снаружи

Теперь, когда мы разобрались, что внутри у нервных клеток, посмотрим на их внешнюю организацию и попробуем разобраться в функциональном разделении.

Вспомните, что мы говорили про один длинный аксон и короткие дендриты.

Так вот, этот вид нейронов называется мультиполярным, и он — самый «популярный», однако, есть и другие: униполярные (всего один отросток), биполярные (два отростка) и псевдоуниполярные (один отросток, который потом делится на два). Есть и вовсе аполярные(«голые») нейроны. Это предшественники нервных клеток – нейробласты.

Интересно, что униполярные нейроны представлены у человека всего лишь в одном виде: амакриновыми клетками сетчатки глаза.

Псевдоуниполярные встречаются гораздо чаще и составляют основную массу спинномозговых чувствительных узлов, о которых мы поговорим чуть позже. Биполярных тоже не так много, и их пул, главным образом, приходится на обонятельные рецепторные клетки.

Ну а с мультиполярными и так всё понятно – это универсальные представители нервной системы (например, мотонейроны спинного мозга).

Но, при всей своей важности, строение  – это всё же не функции.

Каждый нейрон, представляя собой возбуждаемую и возбуждающую клетку (не путать с некими другими физиологическими процессами!), должен своим «настроением» делиться с соседями, иначе сигнал не дойдёт до адресата и не будет обработан и выполнен, что никого, конечно, не устраивает.

Поэтому, подобно водителям, въезжающим на платную скоростную трассу, нейроны должны «заплатить», чтобы передать импульс дальше. Эта «валюта» существует в двух формах: электрической и химической. Второй случай — более частый.

 А контрольно-пропускные пункты с кассами на автомагистралях воплощаются в синапсах — местах передачи возбуждения с клетки на клетку, то есть местах соединения нейронов. Такие места образуются на специальных выростах на дендритах: дендритных шипиках. Они чаще всего бывают трёх видов: пеньковые, грибовидные и тонкие шипики. Но бывают и другие

Дендритный шипик — с его шейкой и головкой

Тонкий, грибовидный и пеньковый шипики

Какие же бывают синапсы?

Реже бывает так. Благодаря ионным каналам в мембране и плотным контактам клеток электрический сигнал без особых усилий перескакивает с нейрона на нейрон и «летит» дальше — пробок нет, оплата принята, водитель доволен. Но это — электрический синапс, или, как еще умничают нейробиологи, эфапс.

Электрические синапсы (эфапсы). а — коннексон (двойная пора) в закрытом состоянии; b — коннексон в открытом состоянии; с — коннексон, встроенный в мембрану; d — мономер коннексина (белка, из которого сделаны коннексоны), е — плазматическая мембрана; f — межклеточное пространство; g — промежуток в 2-4 нанометра в электрическом синапсе; h — гидрофильный канал коннексона.

Но намного чаще случаются ситуации, когда синапс имеет достаточно широкую щель – порядка десятков микрон. То есть перед водителем река, а переправляться придётся на пароме.

Здесь вступает в силу химическая «валюта» в виде нейромедиатора, который накапливается в везикулах (пузырьках) пресинаптической мембраны, затем вырабатывается в эквивалентоном силе пришедшего импульса количестве, «переплывает» щель и принимается рецепторами на другом берегу – постсинаптической мебране.

Вот он, универсальный язык нервной системы, а нейроны по типу нейромедиаторов делятся на холинергические, адренергические, ГАМК-ергические и некоторые другие (об этом читайте в следующих выпусках). Исходя из этого, действие, в зависимости от типа нейромедиатора, бывает либо возбуждающим, либо тормозным.

Химический синапс

Но и это ещё не всё! Есть нейроны чувствительные, которые воспринимают сигнал из внешней или внутренней среды, затем следующие за ними в центральную нервную систему — вставочные, которые обеспечивают ассоциацию в нейронных сетях и могут быть в единичном или множественном числе, и двигательные, которые завершают сигнал действием и иннервируют сократительные или секреторные элементы. Также их ещё можно назвать афферентными (восходящими, двигающимися к центру), интернейронами и эфферентыми (нисходящими, двигающимися к периферии).

«Серый кардинал» нервной системы

Мы поговорили о нейронах, но нельзя забывать и о другой, не менее важной части нервной системы – нейроглии, тем более, что она составляет половину объёма головного мозга и принимает чуть ли не основное участие (как выяснилось в последние годы) в регуляции синаптической передачи, усиливая либо ослабляя сигнал.

Так вот, вся глия по строению, функциям и расположению делится на эпендимную(выстилающую внутреннее пространство цереброспинального канала и желудочков мозга), макро— и микроглию.

Макроглия, в свою очередь, имеет в своём распоряжении целый веер различных подтипов и для центральной, и для периферической нервной системы.

Так, в головном мозге она представлена астроцитами, название которых говорит само за себя (большие звёздчатые клетки с большим количеством отростков, которые оплетают нейроны и сосуды), а также олигодендроцитами, которые обеспечивают внутримозговые волокна миелином (по сути, наматываются отростками на аксон — мы уже упомянули о них), многократно увеличивающим скорость передачи импульса. Периферическая нервная система в основном обходится лишь шванновскими клетками, которые также миелинизируют волокна, но уже за пределами центра, и расходятся по всему организму. И ещё сюда добавляются так называемые мантийные глиоциты или сателлиты, которые образуют оболочку (мантию) вокруг тел нейронов в ганглиях (узлах). Микроглия представляет из себя собственную фагоцитарную систему головного мозга и активируется в основном тогда, когда в нём появляются патологические процессы.

Астроцит

Но нужно всё-таки подчеркнуть важность глии. Работы по её изучению ведутся не так много лет – буквально два последних десятилетия. Появилась такая рабочая гипотеза (автор — Филип Хейдон [Philip G.

Haydon]), согласно которой астроциты, обмениваясь сигналами, активируют нейроны, чьи аксоны находятся от них не только на близком расстоянии, но и сравнительно далеко. Эта активация в итоге способствует высвобождению нейромедиаторов.

Таким образом, астроциты регулируют готовность даже отдалённых синапсов к изменению своей эффективности, что представляет собой клеточную основу процессов памяти и обучения.

Сотрудники из лаборатории Бена Барреса (Ben A. Barres, Стэнфордский университет) пошли дальше и открыли специфический белок тромбоспондин астроцитарного происхождения, который стимулирует образование синапсов.

Сравнение же головного мозга показывает, что чем более высокое положение занимают животные на «эволюционной лестнице», тем больше в их мозге глиальных клеток по отношению к нервным.

Так вот, возможно, что увеличение связности астроцитов может даже повышать способность животных к обучению. Однако это ещё только предстоит доказать.

На острие чувств

В завершение нашего небольшого путешествия внутрь нервной системы разберёмся в том, откуда берутся наши ощущения. Оказывается, здесь строение нервного окончания также имеет самое непосредственное отношение к процессу. Нервные окончания могут располагаться в тканях свободно, могут оканчиваться специальными сенсорными рецепторами, а могут «заключаться» в соединительнотканную капсулу.

Тактильные «граждане» располагаются в слоях соединительной ткани внутренних органов и кожи. Большинство из них – механорецепторы (тактильные, пластинчатые тельца), которые реагируют на какие-либо механические воздействия.

Например, тельца Руффини реагируют на растяжение кожи, тельца Пачини – на давление. Некоторые окончания в эпидермисе «заточены» под регистрацию изменений температуры (тепло – тельца Руффини, холод – колбы Краузе).

Есть даже такие рецепторы, которые могут определять изменения рН, рО2 и рСО2.

Поперечное сечение телец Руффини

Для суставов и мышц есть свои детекторы чувств. К ним относятся мышечные веретёна, сухожильные органы и чувствительные нервные окончания в капсуле суставов.

А дальше – только интереснее. Оставайтесь с нами!

Анна Хоружая

Читайте материалы нашего сайта в ВКонтактеЯндекс-Дзен и канале в Telegram, а также следите за новыми картинками дня в Instagram.

Источник: http://neuronovosti.ru/neuro-dlya-chaynikov-cells/

Что такое вставочный нейрон

Вставочный нейрон получает сигнал от рецепторов. Нейроны и нервная ткань

Вставочный нейрон, известный так же как ассоциативный или интернейрон, присутствует только в тканях ЦНС, взаимосвязан исключительно с другими нервными клетками. Эта особенность отличает его от сенсорных или моторных аналогов.

Сенсорные взаимодействуют с другими системами организма, к примеру, с кожными рецепторами и органами чувств, когда преобразуют стимулы, поступающие из внешней среды в биоэлектрические сигналы.

Моторные клетки иннервируют волокна мышечной ткани и обеспечивают двигательную активность человека.

Виды и характеристики нейронов

Нервные клетки, именуемые нейронами, принимают, отправляют и проводят биоэлектрические сигналы.

Различают эфферентные (двигательные) нейроны – это компоненты ЦНС, которые перенаправляют сигналы исполнительным органам, к примеру, скелетным мышцам.

Афферентные (чувствительные) нейроны – это такие клетки, которые воспринимают внешние и внутренние стимулы, что обеспечивает связь организма с внешней средой и реакции на изменение функциональной активности внутренних органов.

https://www.youtube.com/watch?v=Ew8vOSXIveI

Вставочные клетки обеспечивают взаимосвязи в рамках общей нейрональной сети.

Нейроны всех типов (чувствительные, эфферентные, ассоциативные) являются функциональными единицами, поддерживающими деятельность нервной системы, они находятся во всех тканях организма, где играют роль связующих звеньев между рецепторными (воспринимающими раздражающие стимулы) и эффекторными органами, которые отвечают на раздражающие стимулы.

К эффекторным органам относят мышцы и железы, к рецепторным – органы чувств. Значение проводимых сигналов существенно различается в зависимости от вида клетки и ее роли в функционировании ЦНС.

К примеру, чувствительные, воспринимающие импульсы внешней среды, передают сигналы от кожных рецепторов и органов чувств в направлении головного мозга, двигательные нейроны перенаправляют команды, сформированные в мозге, вызывающие сокращение скелетных мышц и инициирующие движение.

Несмотря на разное значение биоэлектрических импульсов, их природа одинакова и заключается в изменении показателей электрического потенциала в области плазматической мембраны нервной клетки.

Механизм распространения нервных импульсов основан на способности электрического возмущения, появившегося в одном месте клетки, передаваться на другие участки.

При отсутствии факторов, усиливающих сигнал, импульсы затухают по мере удаления от источника возбуждения.

Сенсорный, известный так же как чувствительный – это афферентный нейрон, который проводит импульсы от дистальных участков организма к центральным отделам ЦНС.

К примеру, сенсорные образуют волокна, отходящие от светочувствительных клеток органов зрения.

Сигналы отходят от сетчатки глаза, направляясь по миллионам аксонов, принадлежащих структурам базальных ганглий, в направлении участка зрительной коры.

Чувствительный нейрон в совокупности с исполнительными (двигательными) нейронами образует простую рефлекторную дугу.

К примеру, коленный рефлекс – безусловная рефлекторная реакция растяжения, возникает в результате активности подобной рефлекторной дуги. Реакция в виде неконтролируемого разгибания голени происходит при механическом воздействии на сухожилие мышцы бедра, пролегающее под надколенником. Механизм реакции:

  1. Механическое воздействие на нервно-мышечные веретена, пролегающие в мышце-разгибателе бедра.
  2. Повышение интенсивности нервных сигналов в окончаниях, оплетающих нервно-мышечные веретена, вследствие их растяжения.
  3. Передача импульсов чувствительным нейронам, находящимся в спинальных ганглиях, посредством дендритов, отходящих от бедренного нерва.
  4. Передача импульсов от чувствительных клеток альфа-мотонейронам, пролегающим в передних рогах в границах спинного мозга.
  5. Передача сигнала от альфа-мотонейронов способным к сокращению мышечным волокнам бедренной мышцы.

В механизме коленного рефлекса принимают участие интернейроны, которые передают тормозящие импульсы мотонейронам мышц-сгибателей, и другие вставочные нейроны, к примеру, клетки Реншоу. В механизме коленного рефлекса также задействованы гамма-мотонейроны, которые регулируют интенсивность растяжения веретен.

В спинном мозге, образованном серым веществом, расположены нейроны трех типов – моторные, вставочные, вегетативные. Причем вегетативные находятся в висцеральных (относящихся к внутренним органам) ядрах.

Эти клетки взаимодействуют с афферентными (восходящие проводящие пути, которые передают импульсы от периферических рецепторов в центральные зоны ЦНС) волокнами, отвечающими за общую висцеральную чувствительность.

Висцеральные афференты проводят нервные сигналы (чаще болезненные или рефлекторные ощущения) от внутренних органов, элементов кровеносной системы, желез к соответствующим зонам ЦНС. Висцеральные афференты находятся в составе вегетативного отдела нервной системы. Рефлекторные дуги в рамках вегетативного отдела ЦНС отличаются строением от дуг соматического отдела.

Эфферентные компоненты (нисходящие проводящие пути, которые передают импульсы от корковых и подкорковых зон головного мозга к периферическим участкам) образованы нейронами двух видов – вставочными и эффекторными (двигательными). Вставочные находятся в ядрах, принадлежащих вегетативному отделу ЦНС. Название «вставочный» обусловлено расположением между чувствительным и двигательным нейроном.

Чувствительные

Чувствительный нейрон – это такой компонент нервной системы, который передает в мозг информацию о раздражителях, воздействующих на определенный участок тела. Примером раздражителей могут служить факторы: солнечный свет, механическое воздействие (удар, касание), действие химического вещества. Чувствительные нейроны расположены в ганглиях мозга – спинного и головного.

Связь, образованная с чувствительным нейроном, может провоцировать возбуждение или торможение, которое направляется по нервным волокнам к корковым отделам мозга.

По мере возрастания уровня сенсорных путей, передаваемая информация перерабатывается с идентификацией важных признаков.

Чувствительные относятся к псевдоуниполярным нейронам – их аксон и дендриты отходят от тела вместе, впоследствии разделяются и находятся в спинном, головном мозге (аксон) и в периферических отделах тела (дендриты).

Вставочные

Вставочные нейроны передают преобразованные нервные импульсы, полученные в результате обработки сенсорной информации, поступившей из разных источников, к примеру, от органов зрения и кожных рецепторов. В результате переработанная информация становится исходными данными для формирования адекватных двигательных команд.

Двигательные

Двигательные нервные клетки бывают двух видов – крупные и мелкие. В первом случае речь идет об α-мотонейронах, во втором – о γ-мотонейронах. Альфа-мотонейроны присутствуют в базальных ядрах латеральной (ближе к боковой плоскости) и медиальной (ближе к срединной плоскости) локализации. Это самые крупные клетки, присутствующие нервной ткани.

Их аксоны взаимодействуют с поперечнополосатыми волокнами, содержащимися в составе скелетных мышц. В результате образуются синапсы (места передачи нервных сигналов). Аксоны альфа-мотонейронов взаимосвязаны со вставочными аналогами, известными так же как клетки Реншоу, что приводит к формированию коллатеральных путей и тормозных синапсов в спинном мозге.

Гамма-мотонейроны находятся в составе нервно-мышечного веретена, которое представляет собой сложный рецептор, состоящий из нервных окончаний (афферентных, эфферентных). функция нервно-мышечных веретен заключается в регуляции силы и скорости сокращения или растяжения мускулатуры скелета.

Строение и функции

Вставочная клетка состоит из тела, от которого отходят единичный аксон и дендриты. Дендриты вставочных клеток чаще короткие. Их аксоны вариативно переходят в границах спинного мозга из задних рогов в передние (замыкают дугу на уровне отрезка спинного мозга) или распространяются в область других уровней мозговых структур – спинных, головных.

Одна из функций вставочных нейронов – торможение интенсивности некоторых сигналов.

К примеру, интернейроны неокортекса (новой коры, отвечающей за высшие психические функции – сенсорное восприятие, осознанное мышление, произвольную двигательную активность, речь) избирательно понижают интенсивность части сигналов, поступающих из таламуса, чтобы предотвратить необходимость отвлекаться на посторонние, малозначащие стимулы. Если импульсация, спровоцированная внешним стимулом, недостаточно сильна, она может затухнуть, не доходя до коркового слоя головного мозга.

Область влияния вставочных клеток ограничена индивидуальными особенностями строения – длина отростков-аксонов, количество коллатеральных ответвлений. Обычно вставочные оснащены аксонами с терминалями (концевой участок, представленный синаптическим окончанием – местом контакта с другими клетками), заканчивающимися в пределах одного центра, что обуславливает интеграцию в рамках группы.

Вставочные нейроны замыкают рефлекторные дуги, они воспринимают возбуждение от афферентных нервных структур, перерабатывают данные и передают их двигательным нейронам. Ассоциативные клетки играют ведущую роль в формировании нейрональных сетей, где продлевается срок хранения поступающей и переработанной информации.

Порядок взаимодействия

Рефлекторная регуляция функций организма в интерпретированной, упрощенной форме описана в учебнике биологии для 8-го класса. Вставочные, сенсорные и двигательные нейроны взаимосвязаны. Характер взаимодействия зависит от вида функций нервной системы. Примерный порядок взаимодействия в случае функций чувствительных нейронов, которые локализованы в области кожных покровов:

  1. Восприятие внешнего стимула нервным рецептором, расположенным в коже.
  2. Передача стимула сенсорными клетками к зонам головного мозга. Обычно сигнал проходит через 2 синапса (в спинном мозге и таламусе), затем попадает в сенсорную зону коры полушарий.
  3. Преобразование импульса в универсальную форму.
  4. Передача преобразованного импульса во все корковые отделы полушарий при помощи вставочных нейронов, которые находятся только в ЦНС.

Произвольные движения мышц осуществляются благодаря активности мотонейронов, находящихся в корковой двигательной зоне. Мотонейроны инициируют движение – сигнал поступает в скелетные мышцы по эфферентным волокнам.

В то время как основные сигналы, отправленные мотонейронами, поступают к мышечной ткани, возбуждение распространяется на другие участки мозга, к примеру, на область оливы и мозжечка, где происходит тонкая настройка планирующегося действия.

Вставочные клетки играют роль посредников, обеспечивающих связь между эфферентными и афферентными нервными клетками.

Источник: https://golovmozg.ru/struktura/vstavochnyy-neyron

Чувствительный или сенсорный нейрон

Вставочный нейрон получает сигнал от рецепторов. Нейроны и нервная ткань

В теле человека находится около 100 000 000 нейронов. Для чего они нужны? Почему их так много? Что собой представляет чувствительный нейрон? Какую функцию выполняют вставочные и исполнительные нейроны? Давайте познакомимся поближе с этими потрясающими клетками.

Функции

Ежесекундно через наш головной мозг проходит множество сигналов. Процесс не останавливается даже во сне. Организму нужно воспринимать окружающий мир, совершать движения, обеспечивать работу сердца, дыхательной, пищеварительной, мочеполовой системы и т.д. В организации всей этой деятельности участвуют две основные группы нейронов – чувствительные и двигательные.

Когда мы притрагиваемся к холодному или горячему и чувствуем температуру предмета – это заслуга именно чувствительных клеток. Они мгновенно передают полученную с периферии организма информацию. Так обеспечивается рефлекторная деятельность.

Нейроны формируют всю нашу ЦНС. Главные их задачи:

  1. получить информацию;
  2. передать ее по нервной системе.

Эти уникальные клетки способны мгновенно передавать электрические импульсы.

Чтобы обеспечить процесс жизнедеятельности, организм должен обрабатывать огромное количество информации, которая поступает к нему из окружающего мира, реагировать на любой признак изменения условий среды. Чтобы сделать этот процесс максимально эффективным, нейроны делятся по своим функциям на:

  • Чувствительные (афферентные) – это наши проводники в окружающий мир. Именно они воспринимают информацию извне, от органов чувств, и передают их в ЦНС. Особенность в том, что благодаря их контактной деятельности, мы чувствуем температуру, боль, давление, имеем другие чувства. Чувствительные клетки узкой специализации осуществляют передачу вкуса, запаха.
  • Двигательные (моторные, эфферентные, мотонейроны). Двигательные нейроны передают информацию через электрические импульсы от ЦНС к мышечным группам, железам.
  • Промежуточные (ассоциативные, интеркалярные, вставочные). Теперь подробнее разберемся, какую функцию выполняют вставочные нейроны, для чего они вообще нужны, в чем их отличие. Они располагаются между чувствительными и двигательными нейронами. Вставочные нейроны передают нервные импульсы от чувствительных волокон к двигательным. Они обеспечивают «общение» между эфферентными и афферентными нервными клетками. К ним нужно относиться, как к своеобразным природным «удлинителям», длинным полостям, которые помогают транслировать сигнал от сенсорного нейрона к двигательному. Без их участия это было бы невозможно сделать. В этом и заключается их функция.

Сами рецепторы – это специально отведенные для данной функции клетки кожи, мышц, внутренних органов, суставов. Рецепторы могут начинаться еще в клетках эпидермиса, слизистой. Они умеют точно улавливать мельчайшие изменения, как снаружи организма, так и внутри него.

Такие изменения могут быть физическими или химическими. Затем они молниеносно преображаются в специальные биоэлектрические импульсы и отправляются непосредственно к сенсорным нейронам.

Так сигнал проходит путь от периферии к центру организма, где мозг расшифровывает его значение.

Импульсы от органа в мозг проводят все три группы нейронов – двигательные, чувствительные и промежуточные. Из этих групп клеток и состоит нервная система человека. Такое строение позволяет реагировать на сигналы из окружающего мира. Они обеспечивают рефлекторную деятельность организма.

Если человек перестает чувствовать вкус, запах, снижается слух, зрение, это может указывать на нарушения в ЦНС. В зависимости от того, какие органы чувств задеты, невропатолог может определить, в каком отделе мозга возникли проблемы.

Есть две группы функций нервной системы:

1) Соматическая. Это сознательное управление мышцами скелета.

2) Вегетативная (автономная). Это неконтролируемое сознанием управление внутренними органами. Работа этой системы происходит, даже если человек находится в состоянии сна.

Структура

Сенсорные нейроны чаще всего униполярные. Это означает, что они снабжены лишь одним раздваивающимся отростком. Он выходит из тела клетки (сомы) и выполняет сразу функции и аксона, и дендрита. Аксон – это вход, а дендрит чувствительного нейрона – выход. После возбуждения чувствительных сенсорных клеток по аксону и дендриту проходит биоэлектрический сигнал.

Встречаются и биполярные нервные клетки, которые имеют соответственно два отростка. Их можно обнаружить, например, в сетчатке, структурах внутреннего уха.

Тело чувствительной клетки по своей форме напоминает веретено. От тела отходит 1, а чаще 2 отростка (центральный и периферический).

Периферический по своей форме очень напоминает толстую длинную палочку. Он достигает поверхности слизистой или кожи. Такой отросток похож на дендрит нервных клеток.

Второй, противоположный отросток, отходит от противоположной части тела клетки и по форме напоминает тонкую нить, покрытую вздутиями (их называют варикозности). Это аналог нервного отростка нейрона. Данный отросток направлен в определенный отдел ЦНС и так разветвляется.

Чувствительные клетки еще называют периферическими. Их особенность в том, что они непосредственно находятся за периферической нервной системой и ЦНС, но без них работа данных систем немыслима. Например, обонятельные клетки размещены в эпителии слизистой носа.

Как они работают

Функция чувствительного нейрона состоит в приеме сигнала от специальных рецепторов, расположенных на периферии организма, определении его характеристик. Импульсы воспринимаются периферическими отростками чувствительных нейронов, затем они передаются к их телу, а потом по центральным отросткам следуют непосредственно к ЦНС.

Дендриты сенсорных нейронов соединяются с различными рецепторами, а их аксоны – с остальными нейронами (вставочными). Для нервного импульса самым простым путем становится следующий – он должен пройти по трем нейронам: сенсорному, вставочному, моторному.

Самый типичный пример прохождения импульса – когда невропатолог стучит молоточком по коленному суставу.

При этом моментально срабатывает простой рефлекс: коленное сухожилие после удара по нему приводит в движение мышцу, которая к нему прикреплена; чувствительные клетки от мышцы передают сигнал по чувствительным нейронам непосредственно в спинной мозг.

Там сенсорные нейроны устанавливают контакт с двигательными, а те посылают импульсы обратно в мышцу, приводя ее в сокращение, нога при этом выпрямляется.

Кстати, в спинном мозге у каждого отдела (шейный, грудной, поясничный, крестцовый, копчиковый) находится сразу пара корешков: чувствительный задний, двигательный передний. Они образовывают единый ствол. Каждая из этих пар контролирует свою определенную часть тела и посылает центробежный сигнал, что делать дальше, как располагать конечность, туловище, что делать железе и т.д.

Чувствительные нейроны принимают участие в работе рефлекторной дуги. Она состоит из 5 элементов:

  1. Рецептор. Преобразует в нервный импульс раздражение.
  2. Импульс по нейрону следует от рецептора в ЦНС.
  3. Вставочный нейрон, который расположен в мозге, передает сигнал от нейрона чувствительного к исполнительному.
  4. По двигательному (исполнительному) нейрону основной импульс от мозга проводится к органу.
  5. Орган (исполнительный) – это мышца, железа и т.д. Он реагирует на полученный сигнал сокращением, выделением секрета и т.д.

Вывод

Биология человеческого организма очень продумана и совершенна. Благодаря деятельности множества чувствительных нейронов мы можем взаимодействовать с этим удивительным миром, реагировать на него.

Наш организм очень восприимчивый, развитие его рецепторов и чувствительных нервных клеток достигло высочайшего уровня.

Благодаря такой продуманной организации ЦНС наши органы чувств могут воспринимать и передавать мельчайшие оттенки вкуса, запаха, тактильных ощущений, звука, цвета.

Нередко мы считаем, что главное в нашем сознании и деятельности организма – это кора и полушария мозга. При этом мы забываем, какие колоссальные возможности обеспечивает мозг спинной. Именно функционирование спинного мозга обеспечивает получение сигналов от всех рецепторов.

Трудно назвать предел этих возможностей. Наш организм очень пластичен. Чем больше человек развивается, тем больше возможностей предоставляется в его распоряжение. Такой простой принцип позволяет нам быстро приспособиться к изменениям окружающего мира.

Источник: https://vsepromozg.ru/stroenie/chuvstvitelnyj-nejron

Мотонейрон (двигательный нейрон) альфа и гамма: куда проводит нервный импульс, где находится

Вставочный нейрон получает сигнал от рецепторов. Нейроны и нервная ткань

Вставочный нейрон, известный так же как ассоциативный или интернейрон, присутствует только в тканях ЦНС, взаимосвязан исключительно с другими нервными клетками. Эта особенность отличает его от сенсорных или моторных аналогов.

Сенсорные взаимодействуют с другими системами организма, к примеру, с кожными рецепторами и органами чувств, когда преобразуют стимулы, поступающие из внешней среды в биоэлектрические сигналы.

Моторные клетки иннервируют волокна мышечной ткани и обеспечивают двигательную активность человека.

Смысл рисования нейрографики простыми словами

Простыми словами нейрографика – это способ рисования, в котором создаются уникальные и на первый взгляд абстрактные рисунки. Кроме того, этот метод рисования является арт-терапевтическим: он снимает напряжение и доставляет удовольствие. А через рисунок этот метод отражает работу подсознания человека.

Автор методики и все, кто этому методу обучают, утверждают, что с помощью нейрографики решаются разные проблемы: рисуя нейрографические рисунки, человек проводит работу с подсознанием. Избавляется от стрессов и проблем, достигает желаемых результатов в жизненных ситуациях.

Элементы нейрографики, что они обозначают в методе

Нейрографическая линия — первый и самый важный элемент в нейрографике. Рисуя линию, мы не можем заранее предположить ее направление: она не повторяет себя ни на каком участке бумаги. Вести линию нужно мягко, без острых углов, начиная из любого места. Нейрографическая линия напоминает ветви и корни деревьев, русла рек или молнию.

Три вида базовых фигур, которые постоянно встречаются в жизни людей, вызывая определенные реакции у человека. Эти фигуры независимо ни от чего у всех людей вызывают схожие ассоциации и эмоции.

Фигуры

Круг – это совершенная гармоничная фигура, это солнце, земля — некая защита и завершенность. С кругов рекомендуется новичкам нейрографики снимать ограничения мышления. Гармонизировать общее состояние и мягко войти в этот чудесный заразительный метод рисования. Круги даже в различных народностях являются символами оберега и защищенности.

Источник: https://rptp-rd.ru/rasstrojstva/nejron-stroenie.html

Ваш юрист
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: